Ehab Salah Ali Abd-Elall

Personal Data:

Address Naser city _ Sohag _ Egypt.

Age 34 years old.
Birth date July 17th, 1987.
Nationality Egyptian.
Marital Status Married.
Military Duty Postponed.

Occupation <u>Lecturer at Tabbin Institute for</u>

Metallurgical Studies (TIMS)

Graduation date Jul 2009.

Phone, Cell phone +201279911169,

+201004460663

Email <u>eng_ehab1987@yahoo.com</u>

	Google Scholar	Scopus
Citation	445	377
h-index	13	12

Education:

- B. SC., Engineering, Mechanical Dept., Power section, Assiut University. The overall grade is GOOD with (70.17%). (2009)
- Master degree in Mechanical power and energy Dept. Minia University in "A simulation model and a parametric study of a reverse osmosis process".(2014)
- PHD degree in Mechanical power and energy Dept. Minia University in " Analytical and Experimental Study of an Adsorption Based Desalination System Powered by Solar Energy" (2018).

Experience

- <u>Lecturer at Tabbin Institute for Metallurgical Studies (TIMS)</u> (From 1-1-2019 to now)
- Eight years in holding company for drinking water and waste water in Sohag. I worked in company research section for two years.

- Member team in the project of "Solar Powered Water Desalination Unit as a Commercial Modular "funded by Academy of Scientific Research and Technology with total fund 1,705,000 L.E
- PI in the project of " Zero electricity stand-alone house with solar powered cooling/heating and desalination system " funded by STDF with total fund 1,390,000 L.E

Publications

<u>Jour</u>	<u>rnals</u>	
No.	Title	Impact factor
1	Mohammed, R. H., A. Rezk, A. Askalany, Ehab S. Ali , A. E. Zohir, M.	
	Sultan, M. Ghazy, M. A. Abdelkareem and A. G. Olabi Metal-	4.4.6
	organic frameworks in cooling and water desalination: Synthesis and	14.9
	application, Renewable and Sustainable Energy Reviews, 2021	
2	Ehab S. Ali, Mohammed, R.H., Qasem, N.A., Zubair, S.M. and	
	Askalany A. Solar-powered ejector-based adsorption desalination	44.50
	system integrated with a humidification-dehumidification system,	11.53
	Energy Conversion and Management, 2021	
3	Ehab S. Ali, Askalany, A.A., Harby, K., Diab, M.R., Hussein, B.R. and	
	Alsaman, A.S., 2021. Experimental adsorption water desalination	0.0
	system utilizing activated clay for low grade heat source applications.	8.9
	Journal of Energy Storage, 43, p.103219.	
4	Ghazy, M., Askalany, A.A., Ibrahim, E.M.M., Mohamed, A.S.A., Ali,	
	E.S. and Raya, A.D., 2022. Solar powered adsorption desalination	0.0
	system employing CPO-27 (Ni). Journal of Energy Storage, 53,	8.9
	p.105174.	
5	Ehab S. Ali , Askalany AA, Zohir AE. "Innovative employing of salt	
	hydration with adsorption to enhance performance of desalination and	C ACE
	heat transformation systems". Applied Thermal Engineering. 2020 Oct	6.465
	1;179:115614 .	
6	Askalany AA, Ehab S. Ali, "A new approach integration of ejector	
	within adsorption desalination cycle reaching COP higher than one".	5.353
	Sustainable Energy Technologies and Assessments. 2020 Oct	

	1;41:100766.	
7	Askalany A, Ehab S. Ali, Mohammed RH. "A novel cycle for	
	adsorption desalination system with two stages-ejector for higher	11.2
	water production and efficiency". Desalination. 2020 Dec	11.2
	15;496:114753.	
8	Ehab S. Ali, Mohammed RH, Askalany A. "A daily freshwater	
	production of 50 m ³ /ton of silica gel using an adsorption-ejector	11.07
	combination powered by low-grade heat". Journal of Cleaner	
	Production. 2021 Feb 1;282:124494.	
9	Harby K, Ehab S. Ali, Almohammadi KM. "A novel combined reverse	
	osmosis and hybrid absorption desalination-cooling system to	11.07
	increase overall water recovery and energy efficiency". Journal of	
10	Cleaner Production. 2021 Mar 10;287:125014.	
10	Alsaman, A.S., Askalany, A.A., Ibrahim, E.M.M., Farid, A.M., Ali, E.S.	
	and Ahmed, M.S., 2022. Characterization and cost analysis of a modified silica gel-based adsorption desalination application. <i>Journal</i>	11.07
	of Cleaner Production, 379, p.134614.	
	Aboelmaaref MM, Zayed ME, Zhao J, Li W, Askalany AA, Ahmed MS,	
11	Ehab S. Ali, "Hybrid solar desalination systems driven by parabolic	
	trough and parabolic dish CSP technologies: technology	
	categorization, thermodynamic performance and economical	11.53
	assessment." Energy Conversion and Management 220 (2020):	
	113103.	
12	Alsaman, A.S., Ibrahim, E.M.M., Ahmed, M.S., Ali, E.S., Farid, A.M.	
	and Askalany, A.A., 2022. Experimental investigation of sodium	
	polyacrylate-based innovative adsorbent material for higher	11.53
	desalination and cooling effects. Energy Conversion and	
	Management, 266, p.115818.	
13	Ehab S. Ali, Ahmed Alsaman, Ahmed Askalany, Khaled Harby, M.	
	Reffat " Recycling Brine Water of Reverse Osmosis Desalination	11.2
	System Employing Adsorption Desalination System: a theoretical	

study" Desalination 408 (2017) 13–24	
olday 200amation 100 (2017) 10 21	
14 Ehab S. Ali, Ahmed Askalany, Khaled Harby, M. Reffat, Ahme	ed
Alsaman, " Adsorption desalination-cooling system employing copp	
sulfate driven by low grade heat sources " Applied Therm	6.4
Engineering 136 (2018) 169–176	
15 Ehab S. Ali, Ahmed Askalany, Khaled Harby, M. Reffat, Ahmed	ed
Alsaman, "Weather effect on a solar powered hybrid adsorption	
desalination-cooling system: A Case Study of Egypt's Climate" Applic	ed 6.4
Thermal Engineering, 142 (2017) 663–672.	
16 Ali ES, Mohammed RH, Zohir AE, Farid AM, Elshaer RN, El-Gheta	ny
HH, Askalany AA. Novel ultrasonic dynamic vapor sorption apparate	
for adsorption drying, cooling and desalination applications. Energia	gy 4.5
Reports. 2022 Nov 1;8:8798-804.	
17 Ali, E.S., Asfahan, H.M., Sultan, M. and Askalany, A.A., 2021. A nov	'el
ejectors integration with two-stages adsorption desalination: Away	
scavenge the ambient energy. Sustainable Energy Technologies ar	nd 7.632
Assessments, 48, p.101658.	
18 Zohir, A.E., Ali, E.S., Farid, A.M., Elshaer, R.N., Mohammed, R.H.	H.,
Alsaman, A.S., El-Ghetany, H.H. and Askalany, A.A., 2022. A state-of-	of-
the-art of experimentally studied adsorption water desalination	on 3.5
systems. International Journal of Energy and Environment	
Engineering, pp.1-27.	
19 Alsaman, A.S., Ibrahim, E.M.M., Askalany, A.A., Farid, A.M., Ali, E.S. a	nd
Ahmed, M.S., 2022. Composite material-based a clay for adsorption	
desalination and cooling applications. Chemical Engineering Research as	nd 4.11
Design, 188, pp.417-432.	
20 Alsaman, A.S., Hassan, A.A., Ali, E.S., Mohammed, R.H., Zohir, A.B.	Ξ.,
Farid, A.M., Eraqi, A.M.Z., El-Ghetany, H.H. and Askalany, A.A., 202	
Hybrid Solar-Driven Desalination/Cooling Systems: Current Situation	on 3
and Future Trend. Energies, 15(21), p.8099.	
Conferences	

- Ehab Ali, Ahmed Askalany, Ahmed Alsaman, Khaled Harby M., M. Salem, M. Reffat: "Simulation model for silica gel-water adsorption cooling system powered by renewable energy", 3rd International Conference on Energy Engineering (ICEE-2015), Aswan, Egypt; 12/2015
 Ehab Ali, Ahmed Askalany, Khaled Harby, M. Refaat, "adsorption isotherms of water vapor on aluminum sulfate" 4th International Conference on Innovative Materials for Processes in Energy Systems (IMPRES-2016), Taorimina, Sicily, ITaly; 10/2016.
 Ahmed Alsaman, Ehab Ali, Ahmed Askalany, Khaled Harby M., M. Salem: "Performance improvement of a solar driven adsorption desalination system by heat recovery operation" Twentieth International Water Technology Conference, IWTC20, Hurghada, Egypt 5/2017
 - Ehab Ali ,Ahmed Alsaman, Ahmed Askalany, Khaled Harby M., M. Salem: "Innovated double effect adsorber heat exchanger for adsorption desalination system" Twentieth International Water Technology Conference, IWTC20, Hurghada, Egypt 5/2017

Interested Areas

- Adsorption cooling improvements
- Adsorption materials
- Adsorption desalination
- Reverse osmosis water desalination
- Renewable and sustainable energy applications

Skills:

Energy Engineering, Mechanical Engineering, Desalination, Applied Thermodynamics, Thermal Engineering, Modeling and Simulation, Heat Capacity, Engineering Thermodynamics, Reverse Osmosis, Heat Exchangers, Chemical Engineering

Computer Skills:

Engineering equation solver -TRNSYS Simulation software-MATLAB software- MS Office

Training:

- Training in Specialist on contracts and purchases (25 h)
- Maintenance of pumps
- Certification of water plants operators
- Design and maintenance of waste water networks

 Mother language Arabic. Good in English (listening, speaking, and Writing). 		
 Mother language Arabic. Good in English (listening, speaking, and Writing). 	Languages	s:
		Mother language Arabic. Good in English (listening, speaking, and Writing).